

SSbD implementation II: LCA, sLCA and LCC

Daniele Spinelli, NTT chemtech@tecnotex.it

Next Technology Tecnotessile (NTT)

- Next Technology Tecnotessile Società Nazionale di Ricerca r.l. is an Italian research company established in 1972 in Prato.
- □ Stakeholders: 40% Ministry of University and Research, 60% textile and machinery-textile industries.

□ 24 employers

- ❑ Main business: R&D activities in textile, machinery, automation and material sectors; technological innovation and transfer; project management; testing and validation of products for different sectors.
- □ Technological priorities: Circular Economy, Sustainable textile, Industry 4.0, Chemistry and Nanotechnology, ICT and Photonics.

PRESERV

NTT – Main activities

Consultancy services on textile technologies from raw materials to final products

Modification of materials, surface functionalization, development of novel chemical processes

furniture

(packaging,

and

Circular economy and sustainable textile practices

R&D on treatment and reuse of industrial wastewaters

Design of mechanical devices and machinery development

Composites

automotive.

building sectors)

R&D on process automation and control systems

Environmental monitoring of textile value chain by Life Cycle Assessment (LCA)

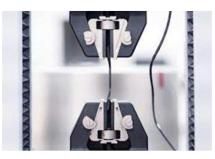
The Tuscan Fashion Cluster

Collaborative activities and R&D diffusion among 450 members (companies in the fashion sector of the Tuscany territory)

- Strengthen the regional technology transfer
- Support R&D collaborative activities for new sustainable technologies, new products and services.



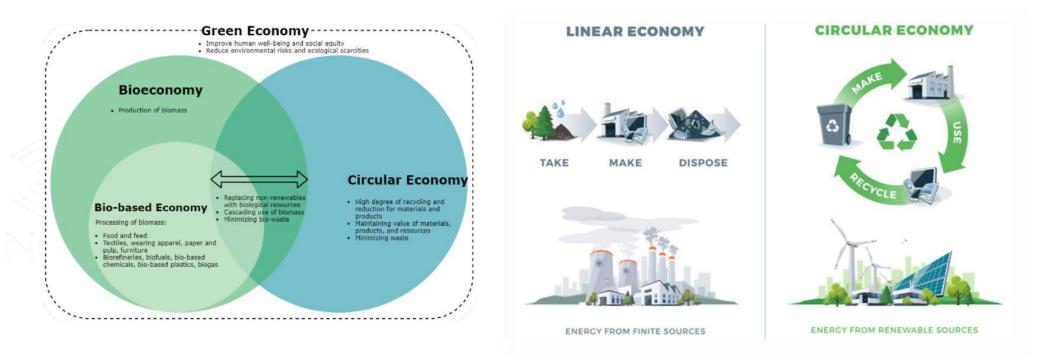
Servizi e dotazioni strumentali per l'industria tessile, conciaria, della calzatura e della pelletteria


CEQ Centro Servizi Qualità Laboratorio prove e tarature | Ricerca applicata | Trasferimento tecnologico Consulenza sui Sistemi di Gestione | Formazione

CEQ LAB

- Chemical and ecotoxicological analysis
- Physical and mechanical testing
- Color fastness
- Surface test
- Environmental and accelerated corrosion test
- · Defect and failure analysis
- Comfort analysis
- Chemical and metallographic analysis
- Mechanical test
- Welded joints and weld process qualification
- Composite material test
- Failure analysis

International Partnerships



- To support the creation of new industrial value chains
- To boost collaboration in technological innovation and technology transfer among different sectors
- To support the internationalization of European SMEs to identify growth opportunities, consolidating their business
- To accelerate green and digital transition

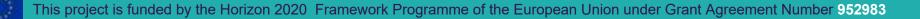
International, national and regional Partnerships

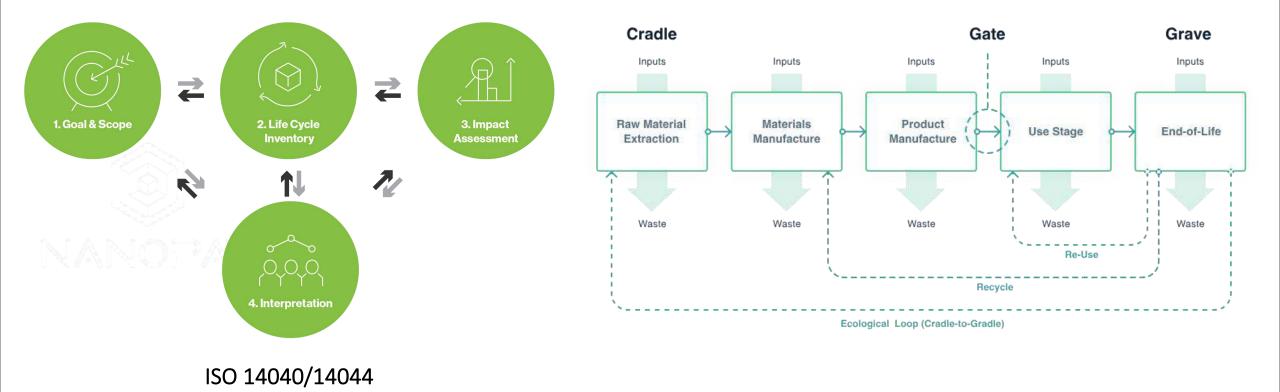
Our funded projects are addressing sustainable practices to bring innovation to textile value chain form raw material to product validation, focusing on textile circularity and bio-based materials.

NTT is associate Member of the Biobased Industries Consortium.

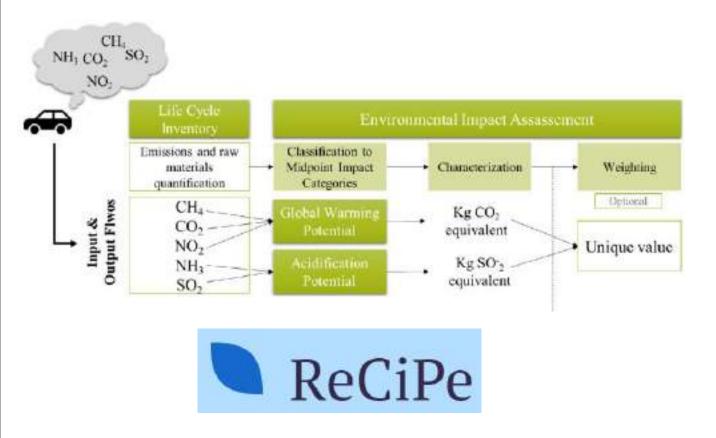
Bio-based Industries Consortium

International, national and regional Partnerships



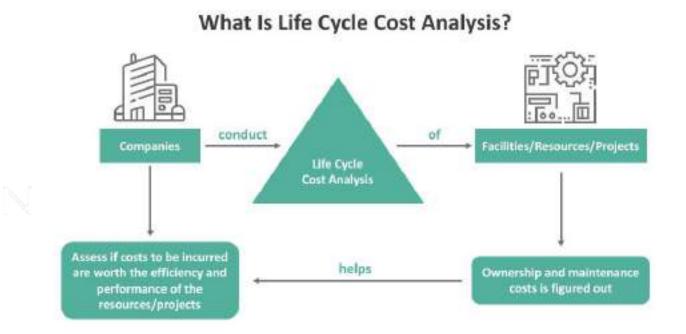

Step 1: The Goal and Scope Definition Identification of the products or services, system boundary to be assessed are identified. Defination Step 2: Life Cycle Inventory Analysis (LCI) Data collection and calculation procedures to quantify relevant energy inputs, raw material inputs, products, coproducts and waste- inputs and outputs of a product system. Inventory Step 3: Life Cycle Impact Assessment (LCIA) Linking inventory data with specific environmental impact categories and category indicators Step 4: Life Cycle Interpretation Result interpretation by reporting, addressing different phases of the study under consideration.

	SUSTAINABLE DESIGN	ECODESIGN	
Definition	Designing a product in a way that takes the reduction of social, environmental, and economic impacts at the heart. Minimize these impacts as much as possible	Ecodesign focuses on reducing environmental impact in every step of your product's life cycle. The foundation for Ecodesign is environmental data on a product.	Circular design means designing a product or service that creates no waste and pollution and keeps products and materials in use.
In practise	Look at design choices that reduce social and environmental impacts along every step in the life cycle of your products. From production to the waste phase. Where can you improve?	Environmental data is calculated through Life Cycle Assessments (LCA). The result: 15+ impact categories for each step in a product's life cycle, Analyze which process, material, or component causes your biggest impact- and improve your design.	Analyze and improve your product's design with two specific goals: (1) Minimum (preferably zero) waste 8 pollution throughout your product's life cycle. (2) Make sure your product's value doesn't decrease at the end of its life.
Examples	 Analyze Social Impact: Are workers being paid fair wages? Will your product have health-endangering effects on consumers when it's used? Analyze environmental impact: Which materials in production are impact-intensive? Which processes could be sustainably optimized? 	 Product Stewardship: Take full responsibility for your product's entire lifecycle. And make sure the product doesn't get last at the end of its life- but stays in the value system. Dematerialization: Reduce the weight, size, and number of materials you use in your design. 	 Designing for inner loops: Material in your product should maintain the highest value during- and after the end of its life. Moving from products to services: Shifting from ownership to access. Instead of purchasing, you offer you product as a service. Co Ecochain

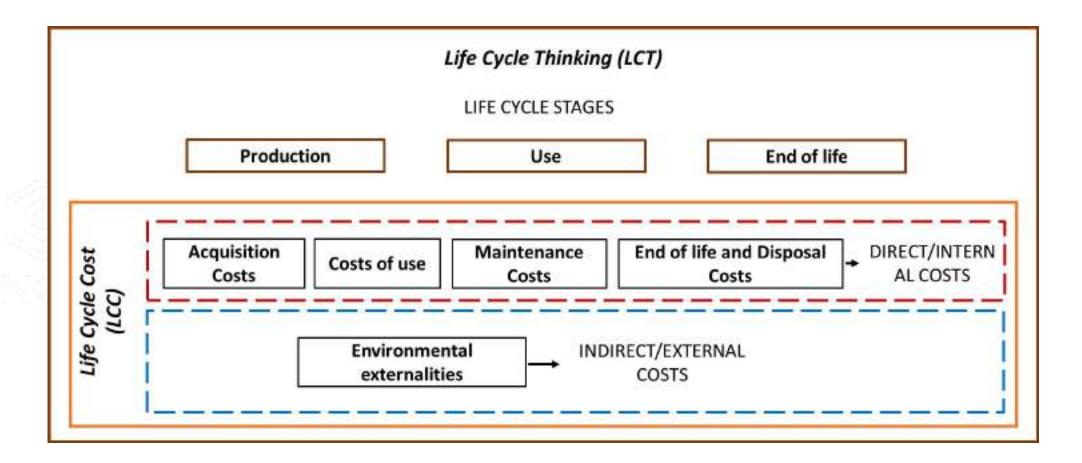


PRESERVE 0

Inputs	Amount	Unit ⁽⁷⁾	Data quality and comments ⁽⁹⁾	Outputs				
Energy carrier including efficien								
electricity	2		DQ: S; Stadtwerke Neuss, Fr./Hr. Mustermann (01 234 56 -	Product/s ⁽¹³⁾				
Compressed air	0,1	Nm ³	DQ: M; Master press, cleaning press	Masterbatch XYZ (ABS-PC)	1	kg	DQ: M; including granulation	
Material inputs ⁽¹¹⁾								
ABS	0,3	kg	DQ: M; Supplier company XXX, Musterstadt, Fr./Hr. Muster	(44)				
PC	0,7	kg	DQ: M; Supplier company YYY, Musterdorf, Fr./Hr. Musterr	Emissions to air ⁽¹⁴⁾	-			
				No				
		-						
Supplies ⁽¹²⁾				(45)				
Hvdraulic oil	0,01	T.	DQS; Master press, maintenance; Press manufacturer Fa. Druckhart, Mr. Hydraulics	Emissions to water ⁽¹⁵⁾				
Domestic water	0,01		DQ: C; Loss of cooling	No				
Domestic water	0,02	-	DQ: S; Cleaning press					
cleaning supplies	0,015		DQ: S; commercially available					
cleaning rags	0,01	kg	DQ: S; commercially available	(10)				
				Waste / disposal route ⁽¹⁶⁾				
				Plastic waste	0,083	kg	DQ: M; currently still disposal via the Musterstadt landfill	
Process				Municipal waste	0,01		DQ: S; Cleaning rags, model town landfill	
Process name ⁽¹⁾	Production of	Mastarba	tch XYZ (ABS-PC)	sewage	0,165		DQ: S; Dirty water from machine cleaning; Disposal of	
Process operator ⁽²⁾	Company	Masterba		-				
Location ⁽³⁾	Address, Pos	stoode City	(Country)					
Reference value and unit ⁽⁴⁾	1 kg Masterb		, ,	Transport ⁽¹⁷⁾				
Contact Person						line and the second		
Contact Person	Company (First Name, L Creation Date Address			Material inputs, operating materials and waste		Distance	Workload (%) (21)	
address		de City (Country) dd.mm.yyyy		(delivered to or from the factory) (18)		(km) ⁽¹⁹⁾		
Telefon		Observation period ⁽⁵⁾		Delivery ABS		450	50 (Outward journey full, empty journey back)	
e-mail		dd.mm.yyyy - dd.mm.yyyy		Delivery rPC		120	50 (Outward journey full, empty journey back)	
Process flow diagram ⁽⁶⁾	Please create	e or attach	a separate sheet "Process flow diagram"					



Impact Category	Unit of the Results		
Global warming (GWP)	kg CO _{bel}		
Stratospheric ozone depletion (ODP)	kg CFC-tt _{eq}		
Ionizing radiation (IRP)	kBq Co-60eq		
Ozone formation, human health (HOFP)	kg NOxeq		
Fine particulate matter formation (FPMF)	kg PM2.5 _{sq}		
Ozone formation, terrestrial ecosystems (EOFP)	kg NOx _{eq}		
Terrestrial acidification (TAP)	kg SO2		
Freshwater eutrophication (FEP)	kg Per		
Marine eutrophication (MEP)	kg Neq		
Terrestrial ecotoxicity (TETP)	kg 1.4-DCB		
Freshwater ecotoxicity (FETP)	kg 1.4-DCB		
Marine ecotoxicity (METP)	kg 1.4-DCB		
Human carcinogenic toxicity (HTPc)	kg 1.4-DCB		
Human non-carcinogenic toxicity (HTPnc)	kg 1.4-DCB		
Land use (LOP)	m² year		
Mineral resource scarcity (SOP)	kg Cueq		
Fossil resource scarcity (FFP)	kg oile		
Water consumption (WCP)	m ³		



- This analysis will be implemented by LCC, which will be conducted in parallel to the LCA
- LCC will be developed in two steps: cost identification and cost-benefits analysis

		LCC Operational Data Template						
		Year						
i i i i i i i i i i i i i i i i i i i	Reference	1	2	3	4	5		
Output volumes								
Raw materials								
Packaging Materials								
Services								
Electric								
Steam								
Air								
Other								
Labour								
Production								
Cleaning								
Maintenance								
Maintenance materials								
Overheads				_		_		
Rent/rates								
Heat/Light					_			
Total Operational Costs	1					1		

Costs not directly related by the users of the product

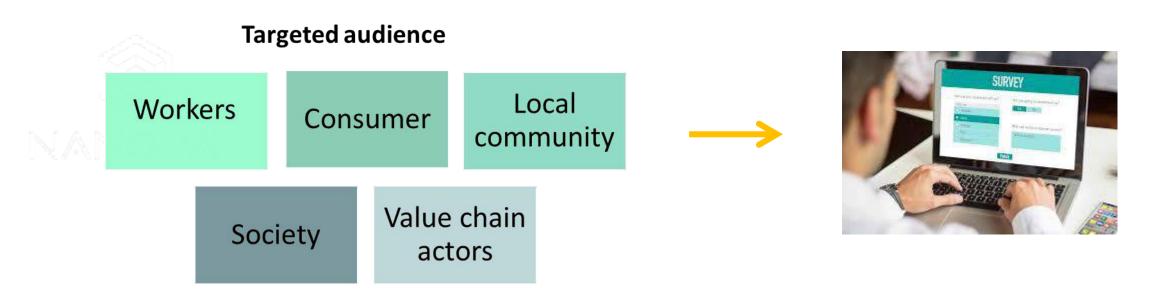
Costs related to environmental externalities related to the products, services or works during the life cycle

The Directive provides that "these costs are included if their monetary value can be **determined** and **verified**; costs may include the costs of emissions of greenhouse gases (GHG) and other pollutants as well as other costs related to climate change mitigation."

Indirect costs are calculated respect to the load associated with material flows and consumption related to life cycle stages.

- I. The inputs (materials, energy, water) and outputs (emissions to air, water, soil and. waste) of the reference product system must be calculated
- II. The inventory is defined
- III. The inventory is then evaluated according to one or more impact categories
- IV. Through the use of monetisation factors, the results of impact categories are transformed into values monetary

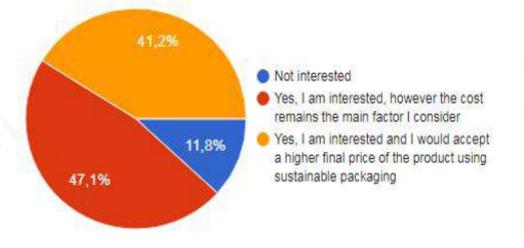
Eco-cost

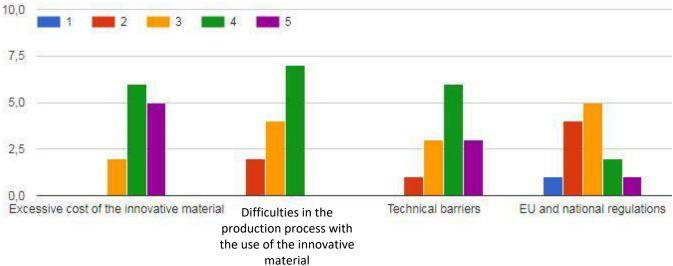

Eco-costs are the costs of the environmental burden of a product on the basis of prevention of that burden. They are the costs which should be made to reduce the environmental pollution and materials depletion in our world to a level which is in line with the carrying capacity of our earth.

		external ecological costs "P of Planet"	exte	rnal socio-economic c "P of People"	osts		
total eco-costs			i		total s-eco-costs		
Ť		Eco-costs	Ţ	s-Eco-costs	↑		
addition (no weighting)					monetary end-scores	eco-costs of	equivalent
l monetary	Eco-costs	Eco-costs of Eco-costs	Eco-costs		↑	acidification	9.275 €/kg SO _x equivalent
endpoints	of resource scarcity	carbon of	of human health	mir	conversion factors	eutrophication	5.0 €/kg phosphate equivalent
Ť	(circular econ.)	footprint		occupational safety & excessive working F extreme povert child labour minimum acceptable	subcategory	ecotoxicity	360.0 €/kg Cu equivalent
marginal				ational safety & essive working h extreme poverty child labour num acceptable	indicators •	human toxicity, cancer	3754 €/kg Benzo(a)pyrene equivale
prevention costs	fossil ura land water	eutrofi acidific eco-to climate	fine di summer cancer + no	al safety & e working h me poverti ild labour acceptable	characterisation	human toxicity, non cancer	25500 €/kg Mercury equivalent
midpoint	fossil fuels uranium land-use water scarc	acidification eco-toxicity limate chang	fine dust mmer sm er + non-c	/ & heal g hours erty ar ble wag	functions	summer smog (respiratory disease	s) 5.67 €/kg NO _x equivalent
indicators f	fuels *) anium d-use · scarcity	ication ication oxicity change	e dust ner smog non-cancer	health nours y wage	 Performance	fine dust	37.1 €/kg fine dust PM2.5
characterisation					Reference	global warming (GWP 100)	0.123 €/kg CO ₂ equivalent
factors		$\wedge \wedge \wedge \wedge$	M = M	<u> </u>	Points		
substances rare ear	+ &	emissions of subs air, water, gr	and the second	mining and manufacturing	 Inventory data		
	*) plastic so	up		1			

Social LCA

A social life cycle assessment (S-LCA) is a method that can be used to assess the social and sociological aspects of products, their actual and potential positive as well as negative impacts along the life cycle.





Social LCA

Are you interested in the social benefits deriving by the use of innovative sustainable materials for packaging?

Which are the main obstacles do you identify? (Rate 1-5 for each option, where 1 is the minimum and 5 is the maximum)

Safe and Sustainable by Design

SSbD is an approach for developing sustainable chemicals and materials with the goal of preventing harm to human health and the environment

