

TRAINING ON SAFE & SUSTAINABLE BY DESIGN FRAMEWORK

SSBD IMPLEMENTATION IN THE PRESERVE PROJECT

30 APRIL 2024 / 10-11 AM CET

ORGANIZED BY ITENE AND EUROPEAN BIOPLASTICS WITH THE COLLABORATION OF NTT AND KNEIA

RESERVE has received funding from the propest Union's Horizon, 2020 research and novation programme under grant premient No 952983.

10:00 – 10:05	Introduction to the European SSbD framework Arantxa Ballesteros, ITENE
10:05 – 10:15	The Preserve Project and contextualisation within the SSbD and circularity Teresa Calvo, ITENE
10:15 – 10:25	SSbD implementation I: product and process safety aspects Javier Alcodori, ITENE
10:25 – 10:40	SSbD implementation II: LCA, sLCA and LCC Daniele Spinelli, NTT
10:40 – 10:45	SSbD Implementation II: Circularity Carla Bartolomé, ITENE
10:45 – 10:50	SSbD implementation III: conclusions of integration of SSbD results Arantxa Ballesteros, ITENE
	Q&A
10:50 - 11:00	

Arantxa Ballesteros, ITENE arantxa.ballesteros@itene.com

in the Parque Tecnológico of Paterna (Valencia), in Spain

ITENE is a Research Centre. which was set up as a private Spanish non-profit association.

Our mission is to aenerate scientific and technoloaical knowledge that we transfer to companies through R&D and innovation projects and consultancu. testing and training services.

ITENE's facilities are located

ITENE develops its own R&D projects or in collaborat on the companies.

We develop our R&D activities at regional, national and European level.

We generate knowledge and technology to build together a safer and more sustainable future through four main areas of work.

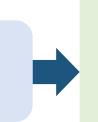
Safety and environmental monitoring technologies

SUSTAINABILITY

Introduction to the European SSbD framework

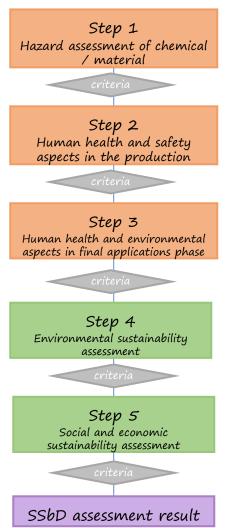
European Green Deal: European Commission aims to transform the

EU's economy for a more sustainable future



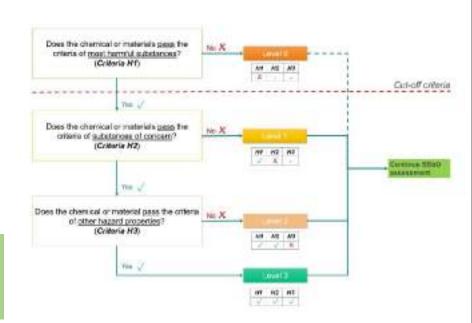
To achieve these objectives, the Chemicals Strategy for Sustainability (CSS) calls for the transition to a Safe and Sustainable by Design (SSbD) approach for chemicals (substances, new materials...).

EC & JRC



SSbD Framework aims to identifying and minimizing, at an **early phase** of the innovation process, the impacts concerning **human** and **environmental health**.

Addresses the **safety** and **sustainability** of the material/ chemical/ product and associated processes along the whole life cycle, including all the steps of the research and development (R&D) phase, production, use, recycling and disposal.


Dec 2023

5-step methodology:

Scoring system for each step (following decision trees and cut-off criteria) which allow to determine if the materials/products under development could be safer and more sustainable than current alternatives

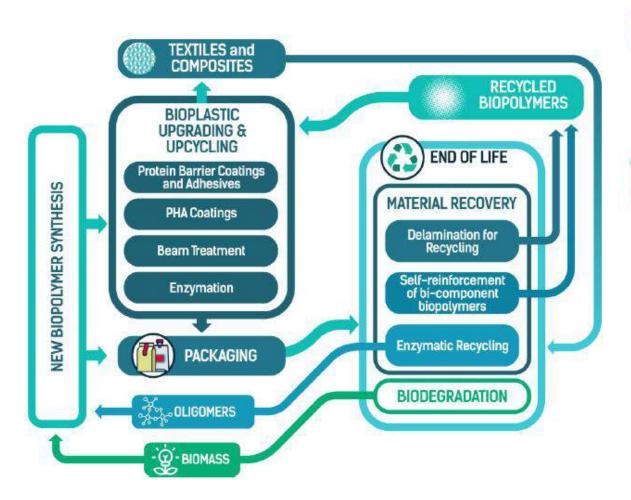
TRANSITION TO GREENER AND SAFER MATERIALS AND PRODUCTS

SAFETY

- Hazard assessment of bio-coatings and materials developed for human and environmental health (raw materials and substances, coatings and materials, final demonstration products)
 - Methods based on IATAs, NAMs
 - Experimental: *in vitro* tests & bioassays
 - *In silico* methods
 - Bibliographic
- Process hazard assessment
 - Occupational exposure

SUSTAINABILITY

- Assessment of the environmental impacts generated by products and processes throughout their life cycle:
 - Pollutant emissions,
 - GHG
 - Contribution to climate change
 - Carbon footprint
 - LCA
 - Circularity
- Socio-economic impacts
 - LCC
 - sLCA



The Preserve Project and contextualisation within the SSbD and circularity

Teresa Calvo, ITENE teresa.calvo@itene.com

The Preserve Project and contextualisation within the SSbD and circularity

Enhance bio-based packaging properties that currently limit the application of bioplastics

Develop upcycling technologies of plastics for food, personal care and transport packaging applications ensuring that microplastics are avoided.

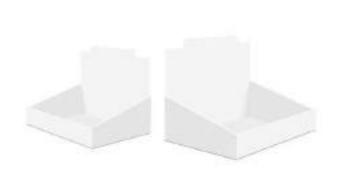
Develop novel standards and certification schemes applicable to packaging materials made from recyclable and biodegradable bio-plastic.

The Preserve Project and contextualisation within the SSbD and circularity

PRESERVE DEMONSTRATORS

Biobased & recyclable food packaging

- Flow pack
- Lid film
- Thermoformed tray
- Dairy pouch
- Briks



Recycled personal care and transport packaging

- Carrier box
- Shopping bag
- Injected jar
- Blow molded bottle

PRESERVE EU-Project partners

Inspired packaging. A world of difference

Normec

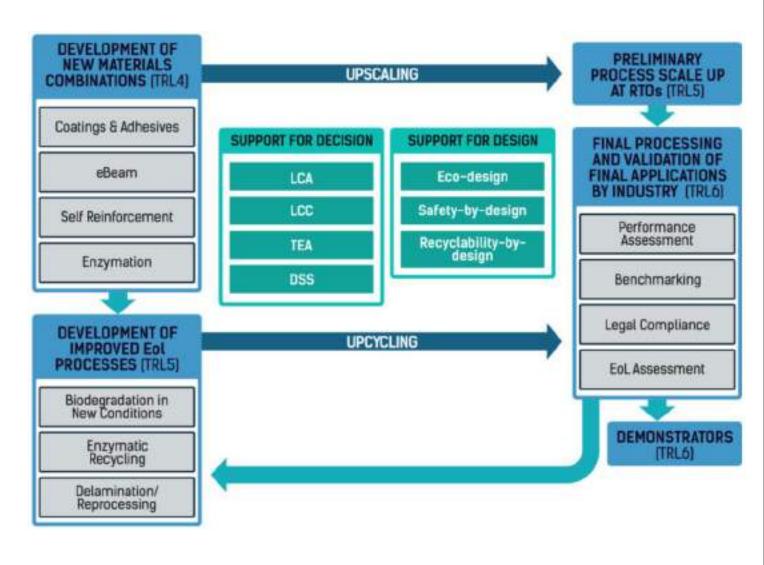
european**bioplastics**

Javier Alcodori, ITENE javier.alcodori@itene.com

Why, What, How?

The Safe- and Sustainability-by-Design (SSbD) concept emphasizes designing products, processes, and systems with safety and sustainability considerations, **mitigating toxicological effects and minimizing potential exposure**throughout a product's lifecycle, from initial design to end-of-life considerations

Release of potentially harmful substances from PRESERVE'S plastic products or during the manufacturing and processing phase


•Environmental impacts & possible adverse effects on health.

By the materials' toxicological profile or by high probability of exposure during industrial use or at the consumption stage by occupational users or the general public.

Process

- Safe- and sustainability-by-design (SSbD) concept is being implemented throughout the project.
 - Development and choice of new materials (polymers, coatings and adhesives).
 - Industrial scale up, processing and production of final products.
 - Usage phase by final users.
 - End-of-Life.

Process

Information gathering

Step 1: Intrinsic

Hazardous
properties

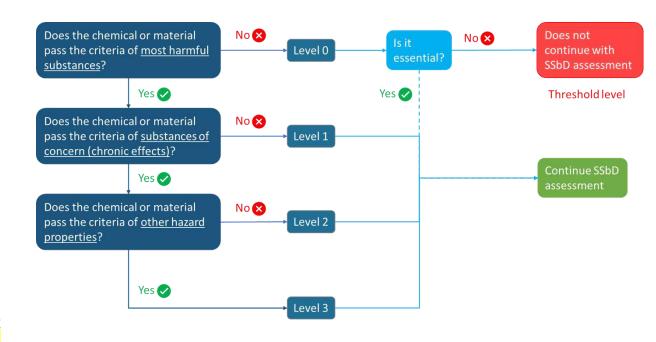
Step 2: Occupational health safety.

Step 3: Human Health and Environmental Aspects of the final application.

Step 4: Environmental sustainability assessment.

- Definition of the criteria for every step
- Information about the materials and chemicals used is being gathered by communication with partners.
- Assessment of the chemicals based on the ECHA, CLP and SDS.
- Estimation of the production and processingrelated risks.
 Risk estimated as a combination of chemical and/or material hazards, exposure and risk management measures.
- Likelihood of exposure to the chemical or material, potential exposure routes and related toxicity impacts on human health and the environment.
- Environmental sustainability aspects of the chemical or material.

How is the framework being applied? Step 1: Intrinsic hazardous properties


For **Step 1**, four levels are currently defined (*from 'Level 0' to 'Level 3'*) that will allow the assessor to rank a specific chemical based on these levels and further to integrate the results of the hazard-based evaluation to the overall SSbD assessment.

Level 0 – chemicals or materials considered most harmful substances (Group A) → **Prioritized for substitution**

Level 1 – chemicals or materials that induce chronic effects, part of the substances of concern (Group B) → **Substituted as far as possible**

Level 2 – chemicals or materials with other hazardous properties (not included in Group A and B) → Flagged for review and eventually reduce toxic effects

Level 3 – chemicals or materials that pass all safety criteria in Step 1.

How is the framework being applied?

Assessment of chemicals by REACH nad CLP regulations

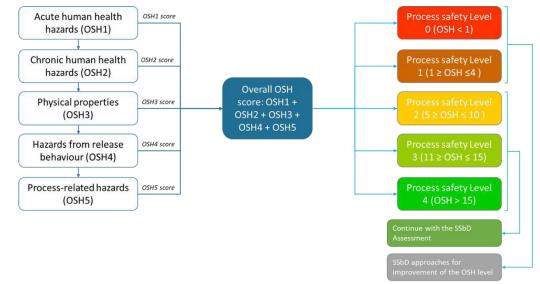
- Human Health Hazards
- Environmental hazards
 - Physical Hazards

Actions Proposed

Assessment of chemicals used in particular by the Safety Data Sheet

How is the framework being applied? Step 2. Human Health and Safety aspects of Production and Processing

For **Step 2**, five levels are currently defined (*from 'Level 0'* to 'Level 4') that will allow to rank the production and processing-related risks levels and further to integrate the results of the hazard-based evaluation to the overall SSbD assessment.

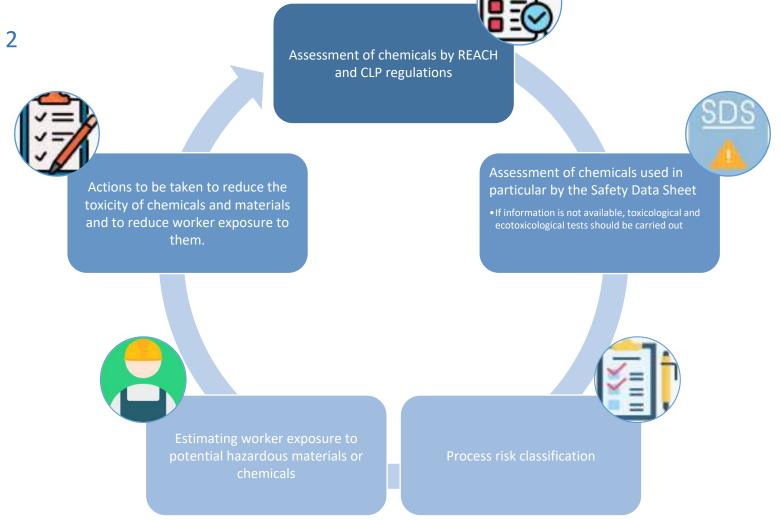

Level 0 – production and processing-related risks considered most dangerous → **Prioritized for modification/substitution**

Level 1 - Prioritized for modification/substitution

Level 2 - Flagged for review and eventually reduce toxic effects

Level 3 – chemicals or materials that pass all safety criteria in Step 2.

Level 4 - chemicals or materials that pass all safety criteria in Step 2.

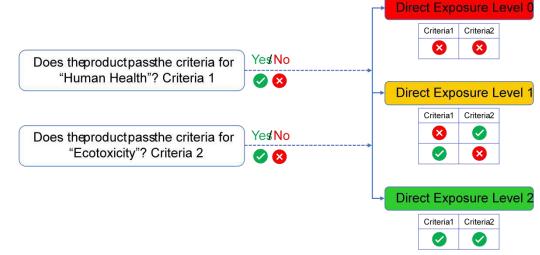

Risk level	Acute human healt h hazards	Chronic hu man health hazar ds	Physical pro perties	Hazards from releas e behaviour	Process- realted haza rds	Safety	
Very high- risk	0	0	0	0	0	0	Very high risk
High-risk	1	1	1	1	1	1-5	High risk
Medium- risk	2	2	2	2	2	6-10	Medium- risk
Low-risk	3	3	3	3	3	11-15	Low-risk
Neglible risk	4	4	4	4	4	16-20	Neglible risk

Aspects

How is the framework being applied? Step 2

Step 2: Human health and safety aspects of production and processing.

Occupational health and safety during production and processing of a chemical


How is the framework being applied? Step 3: Human health and environmental aspects of the final application

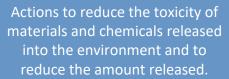
For **Step 3**, three levels are currently defined (*from 'Level 0' to 'Level 2'*) that will allow to rank the human health and environment impacts of the final application of the product and further to integrate the results of the hazard-based evaluation to the overall SSbD assessment.

Level 0 - The product generates a toxic exposure to humans or the environment above the tolerable limit → Prioritized for modification/substitution

Level 1 - Flagged for review and eventually reduce toxic/ecotoxic effects

Level 2 - chemicals or materials that pass all safety criteria.

Position to safe level	Score	Color code	Criteria evaluation
> Safe level + 50%	0		Fail also avisonia
> Safe level; < Safe level + 50%	1		Fail the criteria
> Safe level - 25%; < Safe level	2		
> Safe level - 50%; < Safe level - 25%	3		Pass the criteria
< Safe level - 50%	4		


Aspects

How is the framework being applied? Step 3

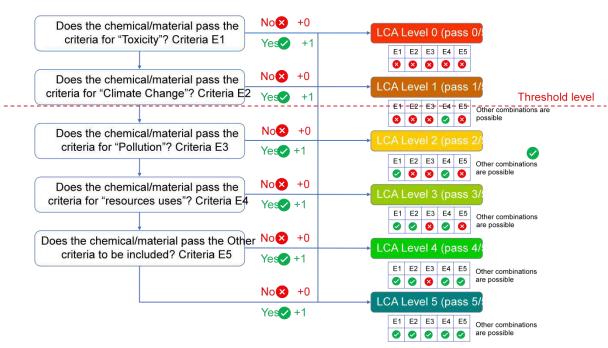
Step 3: Human health and environmental aspects of the final application.

environment

Evaluation of the migration of chemicals and materials into the product contained in the packaging.

Evaluation of the migration of chemicals and materials into the environment.

Assess the migration of chemicals and materials that may be released to the environment during the end-of-life phase.


Assess the migration of chemicals and materials that may reach humans during the end-of-life phase.

Aspects

How is the framework being applied? Step 4: Environmental Sustainability assessment

For **Step 4**, six levels are currently defined (*from 'Level 0' to 'Level 5'*) that will allow to rank the environmental sustainability aspects related to the chemical/material or process under consideration, with a particular emphasis on assessing its environmental impacts throughout the entire value chain, ensuring a thorough understanding of its sustainability performance.

LCA Assessment level	Aspect		
	Human Toxicity cancer		
Toxicity	Human Toxicity no cancer		
	Ecotoxicity		
Climte change	Climate change	0-4	
Pollution	Ozone Depletion	0-4	
	Particulate matter/Respiratory inorganics		
	Losing radiation, human health	0-4	
	Photochemical ozone formation		
Pollution	Acidification		
	Eutrophication, terrestrial	0-4	
	Eutrophication, aquatic freshwater	0-4	
	Eutrophication, aquatic marine	0-4	
	Land use	0-4	
Resources	Water Use		
	Resource use, minerals and metals		
	Resource use, energy carriers	0-4	

Level 0 - 1 - The product generates a toxic exposure to humans or the environment above the tolerable limit → Prioritized for modification/substitution

Level 2 - 3 - Flagged for review and eventually reduce toxic/ecotoxic effects

Level 4 – 5 – chemicals or materials that pass almost all safety criteria.

How is the framework being applied? Step 4

Step 4: Environmental sustainability assessment.

Assessment of the environmental sustainability aspects of the chemical or material in question, focusing on its environmental impacts throughout the value chain

LCA Assessment level	Aspect	Position to reference (improvement %)	Score	Level	
	Human Toxicity, cancer	10	2		
	Human Toxicity non cancer 25		3	•	9
	Ecotoxicity	56	4	~	
Climate Change	Climate Change	5	1	X	1
	Ozone depletion	35.6	3		
	Particulate matter/Respiratory inorganics	-10	0		
	lonising radiation, human health	0	0	X	
Pollution	Photochemical ozone formation	1	1		16
	Acidification	20	2		
	Eutrophication, terrestrial	40	3		
	Eutrophication, aquatic freshwater	41	4		
	Eutrophication, aquatic marine	21	3		
Resources	Land Use	20	2		
	Water use	33	3		12
	Resource use, minerals and metals	89	4		12
	Resource use, energy carriers	21	3		
			38		